翻訳と辞書
Words near each other
・ Jacobson (surname)
・ Jacobson density theorem
・ Jacobson radical
・ Jacobson ring
・ Jacobson v. Massachusetts
・ Jacobson v. United States
・ Jacobson's
・ Jacobson's conjecture
・ Jacobson, Minnesota
・ Jacobsonia
・ Jacobsonia (mite)
・ Jacobsoniidae
・ Jacobson–Bourbaki theorem
・ Jacobsson
・ Jacobstads Wapen
Jacobsthal number
・ Jacobsthal sum
・ Jacobstow
・ Jacobstowe
・ Jacobstown, New Jersey
・ Jacobsville
・ Jacobsville Finnish Lutheran Church
・ Jacobsville Sandstone
・ Jacobsville, Evansville
・ Jacobsville, Maryland
・ Jacobswoude
・ Jacobszoon
・ Jacobs–Wilson House
・ Jacobu
・ Jacobulus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Jacobsthal number : ウィキペディア英語版
Jacobsthal number
In mathematics, the Jacobsthal numbers are an integer sequence named after the German mathematician Ernst Jacobsthal. Like the related Fibonacci numbers, they are a specific type of Lucas sequence U_n(P,Q) for which ''P'' = 1, and ''Q'' = −2—and are defined by a similar recurrence relation: in simple terms, the sequence starts with 0 and 1, then each following number is found by adding the number before it to twice the number before that. The first Jacobsthal numbers are:
:0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, …
== Jacobsthal numbers ==

Jacobsthal numbers are defined by the recurrence relation:
:
J_n =
\begin
0 & \mbox n = 0; \\
1 & \mbox n = 1; \\
J_ + 2J_ & \mbox n > 1. \\
\end

The next Jacobsthal number is also given by the recursion formula:
: J_ = 2J_n + (-1)^n \, ,
or by:
: J_ = 2^n - J_n. \,
The first recursion formula above is also satisfied by the powers of 2.
The Jacobsthal number at a specific point in the sequence may be calculated directly using the closed-form equation:
:
J_n = \frac
3.

The generating function for the Jacobsthal numbers is
:\frac.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Jacobsthal number」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.